Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Evaluation of Pump Design Parameters in Diesel Fuel Injection Systems

1995-02-01
950078
A computer model solving the 1-D flow in a typical fuel injection system for direct-injection diesel engines is presented. A Bosch distributor - type VE pump connected to four Stanadyne pencil - type nozzles has been used to validate the computer model over a wide range of operating conditions. Validation of the developed computer code has been performed for eight representative test cases. The predicted values which were compared with the experimental ones include the pumping chamber pressure, the line pressure, the needle lift and the injection rate. Results using as input the measured pumping chamber pressure are also presented in order to identify the error in the injection rate signal attributed to the difference between the simulated and the experimental pumping chamber pressure. In addition, the total fuel injection quantity for pump speeds between 500 and 2000 rpm and lever positions between 20% to 100% was calculated and compared with measurements.
Technical Paper

Flow and Heat Transfer Characteristics of Impinging Diesel Sprays Under Cross-Flow Conditions

1995-02-01
950448
The spray/wall interaction in small direct-injection diesel engines employing swirl was simulated in a bench-type experiment by a steady cross-flow of air acting on a transient diesel spray impinging normally onto a heated and unheated flat plate under atmospheric conditions. The droplet size and velocity characteristics in the radial wall-jet formed on the plate after spray impingement were investigated by phase-Doppler anemometry and the spray/wall heat transfer during impingement was measured using fast-response thermocouples. The results showed that the mechanism of secondary atomisation of the impinging droplets was altered as droplets from the approaching spray were entrained by the cross-flow, while the spray/wall heat transfer was reduced due to the lower droplet flux reaching the wall. Based on the approaching droplet velocity and size characteristics and wall temperature, an empirical correlation has been derived between the flow and heat transfer parameters.
Technical Paper

Effect of EGR on Combustion Development in a 1.9L DI Diesel Optical Engine

1995-02-01
950850
The effect of various levels of exhaust gas recirculation (EGR) on the combustion characteristics has been investigated in the four-cylinder 1.9L direct-injection optical VW diesel engine in terms of the cylinder pressure, flame development, temperature and KL-factor distributions. Images of the developing flame under twelve engine operating conditions including 1000rpm/idle, 2000rpm/2 bar bmep and 2000rpm/10 bar bmep at 0%, 30% and 50% EGR-rates were obtained by means of two CCD cameras, in the absence of external illumination, with and without interference filters in the optical path. Analysis of these images has revealed that increased EGR rates lead to increased cyclic pressure variations during the warm-up period of the engine, reduced and more fragmented high-temperature regions, reduced flame core temperatures, generally reduced soot oxidation rates but similar ignition delay times.
Technical Paper

An Approach to Charge Stratification in Lean-Burn, Spark- Ignition Engines

1994-10-01
941878
A constant-volume combustion chamber was used to examine injection of a small quantity of slightly rich fuel/air mixture towards the spark plug around the time of ignition, in an overall very lean mixture rotating at velocities representative of modern spark-ignition engines. The results show that it is possible to achieve 100% ignitability with overall air-fuel ratios in excess of 50 and much faster burn rates than those with initially homogenous mixtures of the same equivalence ratio with high swirl and turbulence. The advantages of this method of local charge stratification have been demonstrated in terms of both pressure measurements and shadowgraphs of the early flame development while the transient characteristics of the injected rich mixture at the spark plug gap were monitored by a fast flame ionization detector.
Technical Paper

Imaging of Lean Premixed Flames in Spark-Ignition Engines

1994-10-01
942052
Two optical single-cylinder spark-ignition engines equipped with two- and four-valve cylinder heads were used to examine the flow and flame interaction under lean mixture conditions. Images of the developing flame under quiescent, swirl, low tumble and high tumble flow conditions corresponding to a wide range of mean velocity and turbulence levels around the time of ignition were obtained with an image-intensified CCD camera using the light radiated by the flame and the flow in the vicinity of the spark plug was quantified by laser Doppler velocimetry. In the case of the tumbling flow, the flame images were software-processed to allow estimation of the total flame area, the displacement of its centre as a function of crank angle and their correlation with the cylinder pressure.
Technical Paper

Flow and Combustion in a Four-Valve, Spark-Ignition Optical Engine

1994-03-01
940475
The in-cylinder flow during induction and compression in the pentroof chamber of a four-valve, single-cylinder, spark-ignition optical engine was quantified by LDV and correlated with combustion development especially under lean mixture conditions. The tumble-generating capacity of the cylinder head was first characterised by a tumble adaptor under steady flow conditions and, subsequently, enhanced by two sleeves introduced into the intake ports which generated a stronger tumbling motion.
Technical Paper

Flow and Heat Transfer Characteristics of Impinging Transient Diesel Sprays

1994-03-01
940678
The spatial and temporal characteristics of transient diesel sprays impinging on unheated and heated walls were investigated by phase-Doppler anemometry (PDA) and the heat-transfer distribution in the vicinity of the impingement region was determined by fast response thermocouples. The results have provided quantitative evidence about the effect that the presence of the flat wall exerts on the spray characteristics. For example, independent of the thickness of the liquid film, the wall rearranges the droplet size distribution of the free spray with droplet collision and coalescence playing an important role in both the droplet redistribution and in the development of the wall-jet. Droplet sizes were reduced and mean tangential velocities increased with wall temperature at the upstream side and at the front of the wall-jet, respectively.
Technical Paper

Spray Characteristics of Single- and Two-Spring Diesel Fuel Injectors

1993-03-01
930922
The spatial and temporal characteristics of the non-evaporating diesel sprays injected into the atmosphere through two pump-pipe-nozzle systems used in small DI diesel engines have been investigated by laser-single-beam deflection and phase-Doppler anemometry (PDA). The injectors used for these tests comprised a single-spring and a prototype two-spring multihole-type nozzle. The results provided quantitative information about the effect that the second spring exerts on injection duration and spray characteristics, i.e. it increases injection duration and, at the same time, improves fuel atomisation during the main injection period.
Technical Paper

Visualization of Flow/Flame Interaction in a Constant-Volume Combustion Chamber

1993-03-01
930868
A visualization study using shadowgraphy was performed in an optically-accessible, cylindrical constant-volume combustion chamber to identify the mechanism of flow/flame interaction in spark-ignited, lean propane-air mixtures. The effect of the flow on flame initiation and propagation was examined by varying the pre-ignition mean flow and turbulence within a range typical of modern four-valve spark-ignition (SI) engines, as well as the spark plug orientation relative to the mean flow. The initial flame development was quantified in terms of 2-D images which provided information about the projected flame area and the displacement of the flame center as a function of flow conditions, time from the spark initiation and spark plug orientation. The results showed that high mean flow velocities and turbulence levels can shorten combustion duration in lean mixtures and that the positioning of the ground electrode can have an important effect on the initial kernel formation.
Technical Paper

Correlation between Spark Ignition Characteristics and Flame Development in a Constant-Volume Combustion Chamber

1992-02-01
920413
The electrical characteristics of transistorized coil ignition (TCI) and capacitor discharge ignition (CDI) systems were investigated in spark-ignited quiescent and flowing propane/air mixtures within an optically-accessible, cylindrical constant-volume combustion chamber. Under quiescent flow conditions, the initial pressure, temperature and equivalence ratio of the mixture as well as the spark gap width and geometry were varied systematically in order to examine the relationship between ignition characteristics and flame initiation and development. The effect of the flow in the spark gap on the electrical characteristics of the ignition system, mixture ignitability and flame development was also examined by varying the pre-ignition mean flow and turbulence as well as the spark plug orientation relative to the mean flow.
Technical Paper

Flow and Combustion in a Hydra Direct-Injection Diesel Engine

1991-02-01
910177
Measurements of flow, spray, combustion and performance characteristics are reported for a Hydra direct-injection diesel, based on the Ford 2.5 L, engine and equipped with a variable-swirl port, a unit fuel injector and optical access through the liner and piston. The results provide links between the pre-combustion and combustion flow and, at the same time, between purpose-built single-cylinder optical engines and multi-cylinder production engines of nearly identical combustion chamber geometry. In particular, the spray penetration was found to depend on engine speed, rather than load, with velocities up to around 260 m/s at atmospheric pressure and temperature which are reduced by a factor of 2.5 under operating conditions and seem to be unaffected by swirl. The duration of combustion was reduced with increasing swirl and ignition delay increased linearly with engine speed.
Technical Paper

Coolant Flow in the Cylinder Head/Block of the Ford 2.5L DI Diesel Engine

1991-02-01
910300
Local measurements of the mean and rms velocities have been obtained by laser Doppler velocimetry in the coolant passages of a transparent model of a Ford 2.5L diesel cylinder head and block at a steady flowrate of 6.83 × 10-4 M3/s. The simulation of the coolant fluid by a mixture of hydrocarbon fluids at a predetermined constant temperature allowed accurate matching of the refractive index to that of the acrylic model, thus providing optical access for LDV measurements of the internal flow in sensitive areas where cooling is essential to prevent metal-fatigue failure. The results were obtained in sufficient detail to allow further validation of CFD coolant flow models.
Technical Paper

Tumbling Motion: A Mechanism for Turbulence Enhancement in Spark-Ignition Engines

1990-02-01
900060
The ability of certain induction systems to enhance turbulence levels at the time of ignition, through formation of long-lived tumbling vortices on the plane of the valve and cylinder axes, has been investigated in a two-valve spark-ignition engine by rotating the intake port at 90° and 45° to the orientation of production directed ports. Detailed measurements of the three velocity components, obtained by laser velocimetry, revealed that the 90° port generated a pure tumble motion, with a maximum tumbling vortex ratio of 1.5 at 295°CA, zero swirl, and 42% turbulence enhancement relative to the standard configuration, while the 45° port gave rise to a combined tumble/swirl structure with a maximum tumbling vortex ratio of 0.5 at 285°CA, swirl ratio of 1.0 at TDC, and turbulence enhancement of 24%. The implications of the two types of flow structures for combustion are discussed.
Technical Paper

Transient Characteristics of Multi-Hole Diesel Sprays

1990-02-01
900480
The spatial and temporal characteristics of a diesel spray injected into the atmosphere through a multi-hole nozzle used in small DI Diesel engines have been investigated by laser techniques as a function of pump speed and load. The results showed that spray tip penetration and velocity depend on injection frequency rather than injected volume and the spray is asymmetric during the early and main part of the injection period. In the time/space domain different structures have been identified within the injection period, with the early injection period characterized by a well atomized cloud of droplets, the main period by the spray head and a dense core and the late injection period by the disintegrating dense core and the spray tail. IN DIRECT-INJECTION DIESEL ENGINES for passenger cars, fuel is injected through multi-hole nozzles at high pressure to promote mixing with the rapidly swirling air inside the combustion chamber.
Technical Paper

Transient Characteristics of Single-Hole Diesel Sprays

1989-02-01
890314
Diesel fuel was injected through a pintle nozzle into quiescent ambient air and the transient characteristics of the spray were examined as a function of injection pump speed. The laser-based techniques characterised the spray in terms of its transient structure, tip penetration, droplet axial mean and rms velocities and average droplet size. The results, when correlated with the fuel line pressure and nozzle exit conditions, revealed the presence of four regimes in the transient spray development: an early injection period representing the first stage of droplet formation, the main injection period associated with the formation and break up of a dense core and representing the second stage of droplet formation, a late injection period corresponding to the collapse of the dense core and a post injection period where, depending on the injection conditions, liquid ligaments and/or large droplets are present near the nozzle and may give rise to a third stage of droplet formation.
Technical Paper

Swirl Generation by Helical Ports

1989-02-01
890790
The effect of inlet port design on swirl generation has been investigated for four helical ports from production, prototype and research Dl diesel engines by analyzing experimentally measured steady flow velocity distributions at the inlet valve curtain area and comparing their swirl characteristics in terms of the calculated in-cylinder angular momentum components and swirl ratio under operating conditions.
Technical Paper

Gaseous Simulation of Diesel-Type Sprays in a Motored Engine

1989-02-01
890793
The effect of fuel injection on the flow and the spray/swirl and spray/piston interactions in direct-injection diesel engines have been investigated by simulating diesel sprays with gaseous jet(s) injected through centrally located, single- and multi-hole nozzles into the quiescent and swirling air of a motored engine running at 200rpm and incorporating a flat piston and a re-entrant piston-bowl. The axisymmetric velocity field with and without ‘fuel’ injection was characterised by laser velocimetry near TDC of compression in terms of spatially-resolved ensemble-averaged axial and swirl velocities, the ‘fuel’ concentration field was quantified by laser Rayleigh scattering and the two-dimensional flow was visualised by gated still photography using hollow microballoons as light scatterers.
Technical Paper

Swirl Center Precession in Engine Flows

1987-02-01
870370
The origin and development of swirl center precession in engine flows has been investigated in a steady flow rig, with and without a porous plate simulating a stationary piston, and in a model engine motored at 200rpm; swirl, in all cases, was generated by means of 60° vanes located in the axisymmetric inlet port. The swirl center performs a helical motion that originates as an instability in the forced-vortex core from its interaction with the axial flow at a free stagnation point and develops in the engine from the piston towards the cylinder head; an opposite trend has been observed in the steady flow case with the open-ended cylinder. In the ensemble-averaged measurements, swirl center precession has been identified by the increased tangential velocity fluctuations around the off-centre zero swirl velocity.
Technical Paper

Measurements and Calculations of the Flow in a Research Diesel Engine

1986-10-01
861563
Multidimensional calculations and laser Doppler anemometry measurements are presented of the air flow in a research diesel engine motored at 900 rpm with a compression ratio of ∼8.5. The engine comprised the cylinder head of a Ford 2.5L high speed direct-injection diesel mounted on a single cylinder Fetter engine modified to provide optical access for LDA measurements in a toroidal piston-bowl. The accuracy of the predictions is assessed against ensemble-averaged velocity data and found to be sufficient to allow better understanding of the flow in production engine geometries under realistic operating conditions.
Technical Paper

Three-Dimensional Flow Field in Four-Stroke Model Engines

1984-10-01
841360
Ensemble-averaged and in-cycle axial and swirl velocities have been measured by laser Doppler anemometry in the three-dimensional flow field of a four-stroke model engine motored at 200 rpm with a compression ratio of 6.7 and various cylinder head and piston geometries. The inlet configurations comprised an axisymmetric port with a shrouded valve and an off-centre port with two valve and swirl generating vane geometries. The piston configurations comprised flat, cylindrical and re-entrant axisymmetric piston-bowls. The results indicate that with the off-centre port a complex vortical flow pattern is generated during induction, which later either collapses in the absence of induction swirl or is transformed into a single rotating vortex in the transverse plane when swirl is present. The axisymmetric port with the shrouded valve gives rise to a double vortex structure and higher turbulence levels at TDC of compression compared to the off-centre port.
X